The chicken caudal genes establish an anterior-posterior gradient by partially overlapping temporal and spatial patterns of expression
نویسندگان
چکیده
The caudal genes in vertebrates as in invertebrates assume a posterior position along the anterior-posterior axis and they appear to regulate the expression of the Hox genes. The third chicken caudal gene, Cdx-C, was cloned. Extensive comparisons of the sequence of this protein to the other known members of this homeobox family has lead to the suggestion that vertebrate genomes contain three members of the caudal homeobox family. A comparative study of the chicken Cdx-A and Cdx-C genes during gastrulation and neurulation revealed the differences between the genes. The caudal genes exhibit sequential activation in the newly formed neural plate and sequential extinction in axial midline structures during the primitive streak regression along the anterior-posterior axis. This pattern of expression suggests that the number and identity of caudal genes expressed along the anterior-posterior axis changes dynamically.
منابع مشابه
Nested expression and sequential downregulation of the Xenopus caudal genes along the anterior-posterior axis
Expression of the Xenopus Xcad-1 and Xcad-2 genes initiates during early gastrulation exhibiting a dorsoventral asymmetry in their domains of transcription. At mid-gastrulation the ventral preference becomes stronger and the caudal genes take up a posterior localization in their expression, which they will maintain until their downregulation along the dorsal midline. Comparison of the three Xen...
متن کاملWnt expression patterns in chick embryo nervous system
Several lines of evidence suggest that Wnt genes play a critical role in regulating development of the vertebrate embryo. To address the role that this family may play in the development of the chicken central nervous system (CNS), we have used a PCR based strategy to clone partial sequences for Wnt genes. At least six different Wnt genes are expressed in the developing CNS of the chick embryo....
متن کاملMaternal activation of gap genes in the hover fly Episyrphus.
The metameric organization of the insect body plan is initiated with the activation of gap genes, a set of transcription-factor-encoding genes that are zygotically expressed in broad and partially overlapping domains along the anteroposterior (AP) axis of the early embryo. The spatial pattern of gap gene expression domains along the AP axis is generally conserved, but the maternal genes that re...
متن کاملOtx2 can activate the isthmic organizer genetic network in the Xenopus embryo
Development and differentiation of the vertebrate caudal midbrain and anterior hindbrain are dependent on the isthmic organizer signals at the midbrain/hindbrain boundary (MHB). The future MHB forms at the boundary between the Otx2 and Gbx2 expression domains. Recent studies in mice and chick suggested that the apposition of Otx2- and Gbx2-expressing cells is instrumental for the positioning an...
متن کاملPredicting embryonic patterning using mutual entropy fitness and in silico evolution.
During vertebrate embryogenesis, the expression of Hox genes that define anterior-posterior identity follows general rules: temporal colinearity and posterior prevalence. A mathematical measure for the quality or fitness of the embryonic pattern produced by a gene regulatory network is derived. Using this measure and in silico evolution we derive gene interaction networks for anterior-posterior...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 64 شماره
صفحات -
تاریخ انتشار 1997